Corannulene as a Lewis base: computational modeling of protonation and lithium cation binding.
نویسندگان
چکیده
A computational modeling of the protonation of corannulene at B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p) and of the binding of lithium cations to corannulene at B3LYP/6-311G(d,p)//B3LYP/6-31G(d,p) has been performed. A proton attaches preferentially to one carbon atom, forming a sigma-complex. The isomer protonated at the innermost (hub) carbon has the best total energy. Protonation at the outermost (rim) carbon and at the intermediate (bridgehead rim) carbon is less favorable by ca. 2 and 14 kcal mol(-)(1), respectively. Hydrogen-bridged isomers are transition states between the sigma-complexes; the corresponding activation energies vary from 10 to 26 kcal mol(-)(1). With an empirical correction obtained from calculations on benzene, naphthalene, and azulene, the best estimate for the proton affinity of corannulene is 203 kcal mol(-)(1). The lithium cation positions itself preferentially over a ring. There is a small energetic preference for the 6-ring over the 5-ring binding (up to 2 kcal mol(-)(1)) and of the convex face over the concave face (3-5 kcal mol(-)(1)). The Li-bridged complexes are transition states between the pi-face complexes. Movement of the Li(+) cation over either face is facile, and the activation energy does not exceed 6 kcal mol(-)(1) on the convex face and 2.2 kcal mol(-)(1) on the concave face. In contrast, the transition of Li(+) around the corannulene edge involves a high activation barrier (24 kcal mol(-)(1) with respect to the lowest energy pi-face complex). An easier concave/convex transformation and vice versa is the bowl-to-bowl inversion with an activation energy of 7-12 kcal mol(-)(1). The computed binding energy of Li(+) to corannulene is 44 kcal mol(-)(1). Calculations of the (7)Li NMR chemical shifts and nuclear independent chemical shifts (NICS) have been performed to analyze the aromaticity of the corannulene rings and its changes upon protonation.
منابع مشابه
TRIPHENYLPHOSPHINE CATALYZED AROMATIC ELECTROPHILIC SUBSTITUTION OF 2-HYDROXYACETOPHENONE MEDIATED BY VINYLTRIPHENYLPHOSPHONIUM CATION
Protonation of the highly reactive 1:l intermediate produced in the reaction between triphenylphosphine and dimethyl acetylenedicarboxylate by 2- hydroxyacetophenone leads to vinyltriphenylphosphonium salt, which undergoes aromatic electrophilic substitution reaction with the conjugate base to produce compounds 4,5, and 6 in 1 : 1.2:0.5 ratios
متن کاملWhere to bind in buckybowls? The dilemma of a metal ion.
An exhaustive computational study at the M05-2X/cc-pVDZ level which explores the binding possibilities of cations (Li(+), Na(+), K(+) and Cu(+)) to the concave and convex sides of the hub and rim rings of prototypical buckybowls, sumanene (C(21)H(12)) and corannulene (C(20)H(10)), has been carried out. Five distinct minima on the potential energy surface of sumanene and four on the potential en...
متن کاملStudy of pH influence on the stability of 175th codon of P53 genes by computational and modeling methods
P53 tumor suppressor gene, also known as “genome guardian” is mutated in more than half of allkind of cancers. In this study we have investigated the controls of environmental pH for P53 genemutation in point of specific sequence which is prone to mutagenesis. The most probable cancerousmutations occur as point mutations in exons 5-8 of P53 gene. The 175th codon of P53 is the thirdmost mutated ...
متن کاملLEWIS BASE ADDUCTS OF LEAD(I1) COMPOUNDS 111* SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF LPb(C10,), AND LPb(NCS),, (L= MESO-5,7,7,12,14, 14-HEXAMETHYL- 1,4,8,11- TETRA-AZACY COTETRADECANE)
The reactions of Pb(C10 ) , and Pb(SCN) with meso-5,7,7,12,14,14-hexamethyl- 1,4,8,ll ,tetra-azacyclotetradecane (C ,H ,N = L) yielded colorless crystals of LPb(CI O ) (1) and LPb(NCS) (2), respectively. Their structures were determined by X-ray crystallography. Crystal data: 1 monoclinic, P 2 /c, a =11.293 (4) ?, b = 16.382 (6) ? , c = 21.518(4) ?, ? = 92.14(2)?, Z = 4, MoKa, 1824 obser...
متن کاملSelective endo and exo binding of alkali metals to corannulene.
The ion size matters: the structures of corannulene monoanions crystallized with Cs(+) and Rb(+) ions in the presence of [18]crown-6 reveal the intrinsic binding preferences of alkali metals and allow evaluation of the bowl deformation caused by negative charge distribution and metal binding. The large cesium cation coordinates exclusively to the concave face of C(20) H(10)(-), whereas the smal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 123 27 شماره
صفحات -
تاریخ انتشار 2001